//Calculation of dynamic response of a pressure tap point //www.basicairdata.eu 2013 (c) JLJ //Refer to notations, Pitot page on wwww.basicairdata.eu clear ; R=1e-3; //[m] Internal radius of pressure tap tubing L=0.6;//[m] Line lenght Vu=50e-9;//[m^3] Sensor internal volume Vt=3.14*R^2*L;//[m^3] Line internal diameter sigma=0;// rhos=1.225; //[kg/m^3] Density of air at standard conditions mu=1.78938e-5//[kg/m/s] or [Pas]Aboslute fluid viscosity //mu=0; a0=340;//[m/s] speed of sound gammaratio=1.4;//Cp/Cv Specific heat ratio Pr=0.712;//Prandt Number nu=[1:0.5:1200]';//Frequency value range radiants [c r]=size(nu) for i=1:c alfa(i)=R*((rhos*nu(i)/mu)^0.5)*(complex(-2^0.5/2,2^0.5/2)) //nj(i)=1/((1+(gammaratio-1)/gammaratio*(besselj(2,alfa(i)*Pr^0.5)/besselj(2,alfa(i)*Pr^0.5)))) nj(i)=1.4; phaselag(i)=nu(i)/a0*(besselj(0,alfa(i))/besselj(2,alfa(i)))^0.5*((gammaratio/nj(i))^0.5) tfunction(i)=1/(cosh(phaselag(i)*L)+Vu/Vt*(sigma + 1/gammaratio)*nj(i)*phaselag(i)*L*sinh(phaselag(i)*L)) //tfunction(i)=(cos(nu(i)*L/a0)-gammaratio*Vu/Vt*(sigma+1/gammaratio)*nu(i)*L/a0*sin(nu(i)*L/a0))^-1 [phi(i),mag(i)]=phasemag(tfunction(i)) mag(i)=10^(mag(i)/20) end xsetech([0,0,1,0.5]); plot2d(nu/6.28,mag') xtitle('Frequency response, single pressure tap line www.basicairdata.eu JLJ') xlabel('Frequency [Hz]') ylabel('Magnitude P1/P0') xgrid(1) xsetech([0.,0.5,1,0.5]); plot2d(nu/6.28,phi') //xlabel('Frequency [Hz]') ylabel('Phase lag [Degree]') xgrid(1)